Entrer un problème...
Algèbre linéaire Exemples
[-4156][−4156]
Étape 1
Étape 1.1
Multiply each element of R1R1 by -14−14 to make the entry at 1,11,1 a 11.
Étape 1.1.1
Multiply each element of R1R1 by -14−14 to make the entry at 1,11,1 a 11.
[-14⋅-4-14⋅156][−14⋅−4−14⋅156]
Étape 1.1.2
Simplifiez R1R1.
[1-1456][1−1456]
[1-1456][1−1456]
Étape 1.2
Perform the row operation R2=R2-5R1R2=R2−5R1 to make the entry at 2,12,1 a 00.
Étape 1.2.1
Perform the row operation R2=R2-5R1R2=R2−5R1 to make the entry at 2,12,1 a 00.
[1-145-5⋅16-5(-14)][1−145−5⋅16−5(−14)]
Étape 1.2.2
Simplifiez R2R2.
[1-140294][1−140294]
[1-140294][1−140294]
Étape 1.3
Multiply each element of R2R2 by 429429 to make the entry at 2,22,2 a 11.
Étape 1.3.1
Multiply each element of R2R2 by 429429 to make the entry at 2,22,2 a 11.
[1-14429⋅0429⋅294][1−14429⋅0429⋅294]
Étape 1.3.2
Simplifiez R2R2.
[1-1401][1−1401]
[1-1401]
Étape 1.4
Perform the row operation R1=R1+14R2 to make the entry at 1,2 a 0.
Étape 1.4.1
Perform the row operation R1=R1+14R2 to make the entry at 1,2 a 0.
[1+14⋅0-14+14⋅101]
Étape 1.4.2
Simplifiez R1.
[1001]
[1001]
[1001]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2